
Journal of Chromatography, 291 (1984) 339-347 

Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

CHROM. 16,587 

Note 

Velocity programming of chromatographic separations: a mathemati- 
cal model 

B. J. MCCOY 

Department of Chemical Engineering, University of California, Davis, CA 95616 {U.S.A.) 

(Received October 19th. 1983) 

The use of mobile phase, stationary phase and other programming and gra_ 
dim techniques has expanded in chromatographic practice. Among these techniques 
are temperature-programmed gas chromatographyl, gradient elution* and flow 
(pressure) programming3. These methods can dramatically decrease the separation 
time, frequently without a decrease in the resolution of the output peaks. It is likely 
that these techniques, and combinations of them, will be applied to both large- and 
small-scale systems in the future. 

This study was concerned with flow programming, in which the inlet pressure 
of the fluid to a column is increased, so that the flow-rate increases with time. The 
advantage of velocity programming over temperature programming is that it can 
reduce the processing time, and hence band spreading and skewness, for wide-ranging 
mixtures, while keeping the column at low temperature. Ettre et ~1.~ discussed flow 

programming for packed columns. Poy4 reported renewed interest in flow program- 
ming for capillary gas chromatography. If the mobile phase velocity in liquid-solid 
adsorption chromatography is increased with time, a better separation and a shorter 
analysis time can be achieved, according to Liteanu and Gocat?. Scott and Law- 
rence5 showed experimentally that high-boiling fractions of essential oil were sepa- 
rated on silica-gel in one third of the time by linearly increasing the flow-rate from 
0.4 to 1.4 ml/mm over 90 min. Nygren’s6 exponential flow programming in gas-liquid 
capillary chromatographic columns yielded chromatograms similar to those in linear 
temperature-programmed gas chromatography. Snyder’ showed that separations in 
liquid-solid adsorption chromatography gave the same resolution per unit time with 
either flow programming or temperature programming. Although the practical value 
of flow programming has been demonstrated, its mathematical explication seems not 
to have received much attention. 

A mathematical procedure, based on use of temporal moments, has been de- 
vised for describing gradient and programming methods in chromatographic sepa- 
rations8s9. McCoy*. in examining temperature-programmed gas chromatography, 
showed that the procedure generalized earlier results for retention time by including 
band spreading and skewness. Duarte and McCoy9 estimated the quantitative ad- 
vantages of stationary spatial temperature gradients and suggested an operating pro- 
cedure for realizing those benefits. The present objective was to apply this math- 
ematical method to velocity-programmed chromatographic separations. The math- 
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ematical analysis applies generally to gas or liquid mobile phases in packed-column 
or open-tube chromatography. 

THEORETICAL 

The models for chromatography in a long column yield differential experes- 
sions for the normalized moments8sg: 

dpi = fdz (1) 

dpz = g dz (2) 

dpu, = h dz (3) 

The terms J g and h are known functions of z for gradient chromatography. For 
programmed chromatographyf, g, and h are functions of t. In this case dpi = dt 
represents the incremental time for the migrating solute, and we may write eqns. 1, 
2 and 3 as 

dz = dt/flt) (4) 

dpz = dt g(O/f(O (5) 

&3 = dt h(O/f(t) (6) 

Eqns. 4-6 may be integrated when f, g and h are explicit for a given chromatographic 
model and process. Once moment experessions have been calculated, HETP and 
resolution readily follow according to their respective definitions: 

HETP = p~z/(fi’r)~ (7) 

In essence, the method of analysis we have developed is a way of solving (or obtaining 
information from) partial differential equations with non-constant coefficients. The 
reason the method works is that the changes in time (programming) or in space 
(imposed gradients) are small compared with the concentration changes in the col- 
umn. In other words, the concentration profiles (pulses) have concentration changes 
that are at least an order of magnitude larger than the property changes of program- 
ming or gradient methods. 

A simple model for chromatography’O contains the essential velocity-depen- 
dent features of convection and longitudinal dispersion: 

&(l + k)&/& + vdc/dz - D,d2c/az2 = 0 (9) 
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in terms of the species concentration r(z,t). With initial and boundary conditions 

c(z, 0) = 0 (10) 

404 = co(t) (11) 

c(c0, t) = finite 

one can calculate the coefficients in moment eqns. 1, 2 and 3: 

(12) 

f = &(l + k)/v (13) 

g = 20, ~~(1 + k)2/v3 (14) 

h = 12 D,z &3 (1 + k)3/v5 (15) 

The velocity dependence of longitudinal dispersion in packed columns may be repre- 
sented as1 l 

&i = y1 + y2 v (16) 

where 

y1 = 0.7 DAB (17) 

and 

y2 = 1.75 d& (18) 

This expression accurately represents the axial dispersion data collected by Dullien’ 2 
for a broad range of velocities: 

1o-3 d v d&DAB > 10’ (19) 

For open tubes of radius R the velocity dependence of D, is given by the well known 
equation l l -l z 

D, = DAR + rv2 

where 

(20) 

9 = R2/48DAB (21) 

Linear velocity programming 
For linear velocity programming we have uniformly in the column 

v(t) = vi + p (22) 
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Substituting into eqns. 13 and then 4 and integrating up to the retention time ~1 
gives, for a column of length z, 

1 

z = &(l + k) ( 
viPL; + fBp;’ 

> 
(23) 

or, solving for Jo;, 

/JCL; = $ [-Vi + d Vf + 2/!?E( 1 + k)Z] (24) 

for both packed columns and capillary columns. 
For second and third central moments, eqns. 5 and 6 may be integrated (with 

dv = /?dt) to give for packed columns 

AYZ = 
2&(1 + k) 

B 
[Y~(llVi - l!rJ + Y2 WvJvi>l 

and 

(25) 

43 = 

12&2(1 + k)2 r: 

B 

3 (v;3 - v[3) + y1y*(v;2- v, -2> + yt (vi’ - vi-q (26) 
J 

where the velocity at the retention time is 

VI = vi + p/L; 

For open-tube columns we obtain 

APZ = 

2&(1 + k) 

B 
[DAB (Cl - v; ‘) + ?(Vr - Vi)] 

and 

43 = 

12s2(1 + k)2 DfB 

B 
3 (vi3 - vy3) + 2D,&v;l - 

Exponential velocity programming 
For an exponentially increasing velocity, 

(27) 

(28) 

v;‘) + s’(v, - vi) 1 (29) 

V = Vi ear 

so that 

V, = vi exp(c&) 

(30) 

(31) 
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Integration of the differential first-moment equation (with dt = dv/av) yields 

L = (V, - Vi)/CtE( 1 + k) (32) 

or 

p; = a ln[l + Lx&(1 + k)/v,] 

For packed columns we have 

(33) 

APZ = -2 "ll(iq2 - v;y - y2 (v;l - v;l) 1 (34) 

and 

4~3 = 

12&2(1 + k)2 

CY 

-F (“;4 _ v;4) _ 2:;./2 (v;3 _ q3) 

1 
- ,r: (v,2 - v&.:2) 1 (35) 

For open-tube columns we have 

Ap2 = 2&(1 + k) 2 (q2 _ &,; 2) + vpu; 1 (36) 

Ap3 = 

12&(1 + k) D& 
~~~ ~ 

a 
4 (vi” - vi4) + r/DAB (Vi2 - v;2) + q2pL; 1 (37) 

Stepwise velocity programming 
For stepwise programming the velocity increments between discrete time in- 

tervals are 

v = v, for t,-l < t < t, (38) 

with 

vi = v1 for t,_l = to = 0 (39) 

and 

V, = vN for t, = tN = pi 
(40) 
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Piecewise integration over the discrete intervals of eqn. 4 yields 

or 

p; = 
[ 

&(l + k)L + v, fN-1 $’ v,(t, - t.,,] Iv, 
?I=1 , 

From eqns. 5 and 6, we find for packed columns: 

and 

N 

ApLj = 12s2(1 + Ic)~ 1 (r&,2 
n=l 

and for capillary columns: 

Lip2 = 2&(1 + k) 
[ 

D*B ; (t, 
n=1 

and 

LIPS = 12&(1 + k) ; (t, - t, 

+ Y2/bJ2 (48 - fn-1) 

- tn-1)/d + r/4 
1 

1) (DAB + d)/v,4 

NOTES 

(41) 

(42) 

(43) 

(W 

(45) 

(46) 

DISCUSSION 

To illustrate the effect of velocity programming, calculations for the moments 
are displayed in Fig. 1 for the case of linear programming. The parameters chosen 
were E = 0.4, L = 100 cm, Iti = 0.1 cmjsec, k = 20, DAB = 0.143 cm2/sec, y1 = 
0.10 cm2/sec, y2 = 0.50 cm and q = 3.28 . lop5 sec. The value of y2 corresponds to 
particles of diameter 0.114 mm and the value of q corresponds to a capillary tube 
radius of 0.015 cm. The strong decrease in retention time (first moment), broadening 
(second moment), and skewness (third moment) with 8, the rate of velocity increase, 
is not unlike that found for temperature programming8. The principal reason for this 
behavior is that the reduced retention time causes dispersive processes to have less 
effect. 

The separation efficiency of the column declines with rate of flow program- 



345 NOTES 

107 

106 

105 

r 
z 
g 104 
I 

103 

102 

101 

)L? (Packed Column) 1 
PL, (Capillary) 

a 

0 0.2 0.4 0.6 0.8 1.0 
B 

Fig. 1. Effect of increasing rate of flow programming on first, second, and third moments for gas partition 
chromatography in packed and capillary columns. 
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Fig. 2. Increase in HETP due to increase in the rate of flow programming 
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ming, as shown in Fig. 2 (for a packed column) where HETP increases with p. The 
consequent decrease in resolution of two components is also found in temperature- 
programmed chromatography8 and temperature-gradient gas chromatographyg. In 
spite of the decline in efficiency, the separation process is improved because the re- 
tention time is lessened. 

The velocity dependence of the longitudinal dispersion coefficient is central to 
quantifying the effect of velocity programming on band spreading and skewness. 
Although the fluid-to-particle or fluid-to-wall mass transfer coefficient also will de- 
pend weakly on velocity for a more detailed mathematical model than the one em- 
ployed here, the dispersion is strongly dependent on velocity and its effect cannot be 
safely ignored. Because the velocity dependence of the dispersion coefficient is much 
simpler than the temperature dependence of the partition ratio, the integrations are 
much simpler for flow programming than for temperature programming. 

CONCLUSION 

The moment theory provides a framework for estimating the quantitative effect 
of gradient and programming procedures in chromatographic separations. For many 
separation processes governed by rate process, a complete solution, either numerical 
or analytical, to the differential equations provides more information than is actually 
needed or can conveniently be used. The first and second temporal moments, on the 
other hand, provide precisely the information required for the calculation of HETP 
or more specifically for two different components the resolution as defined by eqn. 
8. 

The model chosen here to describe chromatography in an open tube or a 
packed column ignores details of fluid-to-solid mass transfer, intraparticle diffusion 
and liquid-film diffusion for partition chromatography. However, the model does 
include the important effect of longitudinal dispersion and its velocity dependence 
for both packed columns and open-tube capillary columns. Because the retention 
time, given by the first moment, decreases with increasing rate of flow programming, 
the second and third moments also decrease, lessening the band spreading and skew- 
ness of output peaks. 

SYMBOLS 

DAB 

4 

HETP 
k 
R 
RS 

V 

Vi 
V, 

space- and time-dependent solute concentration in the mobile phase; 
axial dispersion coefficient (cm2/sec); 
molecular diffusion coefficient (cm2/sec); 
particle diameter (cm); 
height equivalent to a theoretical plate (cm); 
partition ratio; 
open-tube radius (cm); 
resolution; 
time (set); 
average (superficial) mobile phase velocity (cmjsec); 
velocity at time f = 0 (cmjsec); 
velocity at retention time (cm/xc); 
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; 

column length (cm); 
rate of velocity increase for linear programming (cm/set*); 

& fractional void space; 

A normalized first moment (set); 

&I normalized nth central moments (se?); 

4 = p(z) - p(O), change of a moment between column inlet and outlet. 

ACKNOWLEDGEMENT 

The author thanks B. Kim and N. L. Pham for helpful discussions. 

REFERENCES 

347 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 

W. E. Harris and H. W. Habgood, Programmed Temperature Gas Chromatography, Wiley, New York, 
1966. 
C. Liteanu and S. Gocan, Gradient Liquid Chromatographv. Wiley, New York, 1974, p. 302. 
L. S. Ettre, L. Mazor and J. Takacs, Advan. Chromatogr., 8 (1969) 272. 
F. Poy, Recent Dev. Chromatogr. and Electrophoresis, 1 (1979) 187. 
R. P. W. Scott and J. G. Lawrence, 1. Ckromatogr. Sci., 7 (I 969) 65. 
S. Nygren, J. Chromatogr., 142 (1977) 109. 
L. R. Snyder, J. Chromatogr. Sci.. 8 (1970) 692. 
B. J. McCoy, Separ. Sci. Technol., 14 (1979) 515. 
P. E. Duarte and B. J. McCoy, Separ. Sci. Technol., 17 (1982) 879. 
S. Dal Nogare and R. S. Juvet, Jr., Gas Liquid Chromatography: Theory and Practice, Wiley-Intersci- 
ence, New York, 1962. 
T. K. Perkins and 0. C. Johnston, Sor. Petr. Eng. J., 3 (1963) 70. 
F. A. L. Dullien, Porous Media: &id Transport and Pore Srrucrure, Academic Press, New York, 1972, 
p. 344. 


